login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A340834
Fixed points of A341885.
1
12, 1222, 1437286, 3441373, 1032893366969
OFFSET
1,1
COMMENTS
Numbers n such that A341885(n) = n.
Includes 2*p*q if p and q are primes such that p^2-4*p*q+q^2+p+q+6 = 0. This includes 12 for p=2, q=3, 1222 for p=13,q=47, 1437286 for p=439, q=1637, and 76498942675946443126 for p=3201392659, q=11947760057.
Another term: 6538810199342921107066977217325653068509 = 13 * 4401624135264074597*114272683103433355069. - Chai Wah Wu, Feb 25 2021
FORMULA
A341885(a(n)) = a(n).
EXAMPLE
a(2) = 1222 is a term because 1222 = 2*13*47 and A341885(1222) = 2*3/2 + 13*14/2 + 47*48/2 = 1222.
MAPLE
f:= proc(n) local F, t;
F:= ifactors(n)[2];
add(t[1]*(t[1]+1)/2*t[2], t=F)
end proc:
select(t -> f(t)=t, [$1..4000000]);
MATHEMATICA
Block[{a = {}}, Monitor[Do[If[# == i, AppendTo[a, i]] &@ Total[PolygonalNumber@ Flatten[ConstantArray[#1, #2] & @@@ FactorInteger[i]]], {i, 2, 4*10^6}], i]; a] (* Michael De Vlieger, Feb 22 2021 *)
PROG
(Python)
from sympy import factorint
A340834_list = [n for n in range(2, 10**4) if n == sum(k*m*(m+1)//2 for m, k in factorint(n).items())] # Chai Wah Wu, Feb 25 2021
CROSSREFS
Cf. A341885.
Sequence in context: A301474 A054351 A080814 * A078294 A317953 A009155
KEYWORD
nonn,more
AUTHOR
J. M. Bergot and Robert Israel, Feb 22 2021
EXTENSIONS
a(5) from Martin Ehrenstein, Mar 07 2021
STATUS
approved