login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A340617
Decimal expansion of Product_{p prime, p == 3 (mod 4)} (1 - 2/p^2).
1
7, 2, 1, 0, 9, 7, 9, 7, 8, 2, 4, 0, 7, 5, 2, 4, 1, 5, 8, 3, 2, 4, 3, 1, 1, 7, 7, 5, 0, 3, 5, 0, 6, 4, 1, 9, 3, 3, 2, 3, 8, 0, 0, 9, 4, 8, 8, 2, 2, 7, 0, 9, 0, 4, 4, 8, 6, 4, 2, 7, 7, 4, 6, 9, 5, 1, 2, 7, 0, 9, 1, 2, 6, 0, 3, 6, 6, 0, 3, 9, 4, 7, 1, 7, 2, 0, 6, 5, 0, 1, 7, 3, 7, 9, 8, 4, 9, 3, 6, 2, 2, 8, 8, 7, 6, 5
OFFSET
0,1
LINKS
X. Gourdon and P. Sebah, Some Constants from Number theory
R. J. Mathar, Table of Dirichlet L-series and Prime Zeta Modulo functions for small moduli, arXiv:1008.2547 [math.NT], 2010-2015, page 38 (case 4 3 2).
FORMULA
Equals 2*A065474/A335963.
EXAMPLE
0.7210979782407524158324311775035064193323800948822709044864277469512...
MAPLE
Digits := 150;
with(NumberTheory);
DirichletBeta := proc(s) (Zeta(0, s, 1/4) - Zeta(0, s, 3/4))/4^s; end proc;
alfa := proc(s) DirichletBeta(s)*Zeta(s)/((1 + 1/2^s)*Zeta(2*s)); end proc;
beta := proc(s) (1 - 1/2^s)*Zeta(s)/DirichletBeta(s); end proc;
pzetamod43 := proc(s, terms) 1/2*Sum(Moebius(2*j + 1)*log(beta((2*j + 1)*s))/(2*j + 1), j = 0..terms); end proc;
evalf(exp(-Sum(2^t*pzetamod43(2*t, 70)/t, t = 1..200)));
MATHEMATICA
S[m_, n_, s_] := (t = 1; sums = 0; difs = 1; While[Abs[difs] > 10^(-digits - 5) || difs == 0, difs = (MoebiusMu[t]/t) * Log[If[s*t == 1, DirichletL[m, n, s*t], Sum[Zeta[s*t, j/m]*DirichletCharacter[m, n, j]^t, {j, 1, m}]/m^(s*t)]]; sums = sums + difs; t++]; sums);
P[m_, n_, s_] := 1/EulerPhi[m] * Sum[Conjugate[DirichletCharacter[m, r, n]] * S[m, r, s], {r, 1, EulerPhi[m]}] + Sum[If[GCD[p, m] > 1 && Mod[p, m] == n, 1/p^s, 0], {p, 1, m}];
Z2[m_, n_, s_] := (w = 1; sumz = 0; difz = 1; While[Abs[difz] > 10^(-digits - 5), difz = 2^w * P[m, n, s*w]/w; sumz = sumz + difz; w++]; Exp[-sumz]);
$MaxExtraPrecision = 1000; digits = 121; RealDigits[Chop[N[Z2[4, 3, 2], digits]], 10, digits-1][[1]]
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Vaclav Kotesovec, Jan 13 2021
STATUS
approved