OFFSET
0,13
COMMENTS
Also the number of integer partitions of n with maximum 2^k where k is the length.
EXAMPLE
The partitions for n = 12, 14, 16, 22, 24:
32211111 32222111 32222221 33333322 33333333
33111111 33221111 33222211 33333331 4222221111111111
33311111 33322111 4222111111111111 4322211111111111
33331111 4321111111111111 4332111111111111
4411111111111111 4422111111111111
4431111111111111
The conjugate partitions:
(8,2,2) (8,3,3) (8,4,4) (8,7,7) (8,8,8)
(8,3,1) (8,4,2) (8,5,3) (8,8,6) (16,3,3,2)
(8,5,1) (8,6,2) (16,2,2,2) (16,4,2,2)
(8,7,1) (16,3,2,1) (16,4,3,1)
(16,4,1,1) (16,5,2,1)
(16,6,1,1)
MATHEMATICA
Table[Length[Select[IntegerPartitions[n], Length[#]==2^Max@@#&]], {n, 0, 30}]
CROSSREFS
Note: A-numbers of Heinz-number sequences are in parentheses below.
A072233 counts partitions by sum and length.
A340597 lists numbers with an alt-balanced factorization.
A340653 counts balanced factorizations.
A340689 have a factorization of length 2^max.
A340690 have a factorization of maximum 2^length.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jan 28 2021
STATUS
approved