%I #37 Jul 25 2021 13:47:29
%S 1,3,1,5,3,2,8,5,6,3,10,8,10,9,5,14,10,16,15,15,7,16,14,20,24,25,21,
%T 11,20,16,28,30,40,35,33,15,23,20,32,42,50,56,55,45,22,27,23,40,48,70,
%U 70,88,75,66,30,29,27,46,60,80,98,110,120,110,90,42,35,29,54,69,100,112,154,150,176,150,126,56
%N Triangle read by rows: T(n,k) = A006218(n-k+1)*A000041(k-1), 1 <= k <= n.
%C Conjecture 1: T(n,k) is the total number of divisors of the terms that are in the k-th blocks of the first n rows of triangle A176206.
%C Conjecture 2: the sum of row n equals A284870, the total number of parts in all partitions of all positive integers <= n.
%C The above conjectures are connected due to the correspondence between divisors and partitions (cf. A336811).
%e Triangle begins:
%e 1;
%e 3, 1;
%e 5, 3, 2;
%e 8, 5, 6, 3;
%e 10, 8, 10, 9, 5;
%e 14, 10, 16, 15, 15, 7;
%e 16, 14, 20, 24, 25, 21, 11;
%e 20, 16, 28, 30, 40, 35, 33, 15;
%e 23, 20, 32, 42, 50, 56, 55, 45, 22;
%e 27, 23, 40, 48, 70, 70, 88, 75, 66, 30;
%e 29, 27, 46, 60, 80, 98, 110, 120, 110, 90, 42;
%e 35, 29, 54, 69, 100, 112, 154, 150, 176, 150, 126, 56;
%e ...
%e For n = 6 the calculation of every term of row 6 is as follows:
%e --------------------------
%e k A000041 T(6,k)
%e 1 1 * 14 = 14
%e 2 1 * 10 = 10
%e 3 2 * 8 = 16
%e 4 3 * 5 = 15
%e 5 5 * 3 = 15
%e 6 7 * 1 = 7
%e . A006218
%e --------------------------
%e The sum of row 6 is 14 + 10 + 16 + 15 + 15 + 7 = 77, equaling A284870(6).
%o (PARI) f(n) = sum(k=1, n, n\k); \\ A006218
%o T(n,k) = f(n-k+1)*numbpart(k-1); \\ _Michel Marcus_, Jan 15 2021
%Y Columns 1 and 2 give A006218.
%Y Leading diagonal gives A000041.
%Y Row sums give A284870.
%Y Cf. A176206, A221531, A339106, A340424, A340425, A340524, A340426, A340527, A336811.
%K nonn,tabl
%O 1,2
%A _Omar E. Pol_, Jan 10 2021