login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A340444
a(n) is the least prime of the form p*q + p*r + q*r where p is the n-th prime and q and r are primes < p, or 0 if there are none.
2
0, 0, 31, 41, 61, 71, 151, 101, 199, 151, 227, 191, 211, 311, 241, 271, 487, 311, 479, 653, 521, 401, 421, 727, 491, 823, 521, 541, 773, 571, 641, 661, 691, 701, 751, 761, 1109, 821, 2039, 1399, 1447, 911, 1543, 971, 991, 1607, 1061, 1571, 1831, 1151, 1171, 1201, 1697, 2273, 1291, 1321, 2711
OFFSET
1,3
COMMENTS
If prime(k) is in A023219, a(k) = 5*prime(k)+6.
LINKS
EXAMPLE
a(7) = 151 because prime(7) = 17, and 151 = 17*3+17*5+3*5 is the least prime of the form 17*p + 17*q + p*q.
MAPLE
f:= proc(n) local p, L, i, j, t;
p:= ithprime(n);
L:= sort([seq(seq((ithprime(i)+p)*(ithprime(j)+p)-p^2, i=1..j-1), j=2..n-1)]);
for t in L do if isprime(t) then return t fi od:
0
end proc:
A:= map(f, [$1..100]);
PROG
(Python)
from sympy import isprime, prime
def aupto(nn):
alst, plst = [0 for i in range(nn)], [prime(i+1) for i in range(nn)]
for n in range(1, nn+1):
p = plst[n-1]
t = ((p, plst[i], plst[j]) for i in range(n-2) for j in range(i+1, n-1))
for s in sorted(p*q + p*r + q*r for p, q, r in t):
if isprime(s): alst[n-1]=s; break
return alst
print(aupto(57)) # Michael S. Branicky, Jan 07 2021
CROSSREFS
Sequence in context: A088555 A040178 A089719 * A109550 A040991 A089721
KEYWORD
nonn,look
AUTHOR
Robert Israel, Jan 07 2021
STATUS
approved