login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A340308
Primes p such that (p*q+r*s)/2 is prime, where q,r,s are the next 3 primes after p.
2
5, 7, 11, 23, 53, 73, 107, 137, 157, 179, 263, 281, 317, 373, 457, 593, 673, 821, 857, 1087, 1297, 1481, 1619, 1753, 1789, 2203, 2221, 2383, 2459, 2557, 2683, 2767, 2797, 2803, 2833, 3331, 3359, 3371, 3733, 3967, 4051, 4217, 4783, 4967, 5023, 5113, 5171, 5309, 5351, 5443, 5449, 5573, 6079, 6163
OFFSET
1,1
LINKS
EXAMPLE
a(3) = 11 is a term because (11*13+17*19)/2 = 233 is prime.
MAPLE
q:= 3: r:= 5: s:= 7:
count:= 0: R:= NULL:
while count < 100 do
p:= q; q:= r; r:= s; s:= nextprime(s);
v:= (p*q + r*s)/2;
if isprime(v) then count:= count+1; R:= R, p fi
od:
R;
MATHEMATICA
Select[Partition[Prime[Range[1000]], 4, 1], PrimeQ[(#[[1]]#[[2]]+#[[3]]#[[4]])/2]&][[All, 1]] (* Harvey P. Dale, Feb 06 2023 *)
PROG
(PARI) isok(p) = if (isprime(p) && (p>2), my(q=nextprime(p+1), r=nextprime(q+1), s=nextprime(r+1)); isprime((p*q+r*s)/2)); \\ Michel Marcus, Jan 04 2021
CROSSREFS
Cf. A340307.
Sequence in context: A005385 A181602 A075705 * A339096 A249735 A218394
KEYWORD
nonn
AUTHOR
J. M. Bergot and Robert Israel, Jan 03 2021
STATUS
approved