|
|
A340283
|
|
Number of partitions of n into 3 parts such that the smallest part is relatively prime to each of the other two parts.
|
|
2
|
|
|
0, 0, 1, 1, 2, 2, 3, 4, 4, 5, 6, 8, 7, 10, 9, 12, 11, 17, 13, 20, 16, 21, 18, 29, 21, 31, 26, 35, 27, 46, 29, 46, 37, 50, 39, 62, 40, 63, 51, 70, 50, 87, 54, 85, 69, 88, 65, 112, 71, 111, 84, 112, 81, 140, 89, 134, 103, 138, 99, 178, 105, 164, 131, 171, 126, 207, 125, 195, 152
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,5
|
|
LINKS
|
|
|
FORMULA
|
a(n) = Sum_{k=1..floor(n/3)} Sum_{i=k..floor((n-k)/2)} floor(1/gcd(k,i)) * floor(1/gcd(k,n-i-k)).
|
|
MATHEMATICA
|
Table[Sum[Sum[Floor[1/GCD[k, i]]*Floor[1/GCD[k, n - i - k]], {i, k, Floor[(n - k)/2]}], {k, Floor[n/3]}], {n, 80}]
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|