|
|
A340282
|
|
Number of partitions of n into 3 parts such that the largest part is relatively prime to at least one other part.
|
|
1
|
|
|
0, 0, 1, 1, 2, 2, 4, 4, 6, 6, 9, 8, 13, 12, 16, 16, 22, 18, 28, 24, 31, 30, 38, 32, 46, 41, 52, 47, 63, 48, 72, 63, 78, 70, 89, 72, 101, 88, 107, 95, 125, 96, 139, 118, 141, 131, 164, 128, 180, 148, 184, 166, 209, 161, 222, 189, 228, 205, 258, 192, 277, 236, 279, 250, 310
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,5
|
|
LINKS
|
|
|
FORMULA
|
a(n) = Sum_{k=1..floor(n/3)} Sum_{i=k..floor((n-k)/2)} sign(floor(1/gcd(n-i-k,k)) + floor(1/gcd(n-i-k,i))).
|
|
MATHEMATICA
|
Table[Sum[Sum[Sign[Floor[1/GCD[n - i - k, k]] + Floor[1/GCD[n - i - k, i]]], {i, k, Floor[(n - k)/2]}], {k, Floor[n/3]}], {n, 80}]
lppQ[{a_, b_, c_}]:=Total[Boole[{CoprimeQ[c, a], CoprimeQ[b, a]}]]>0; Table[Length[ Select[ IntegerPartitions[n, {3}], lppQ]], {n, 70}] (* Harvey P. Dale, May 08 2022 *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|