login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A340269
Numbers k > 1 such that lpf(k)-1 does not divide d-1 for at least one divisor d of k, where lpf(k) is the least prime factor of k (A020639).
2
35, 55, 77, 95, 115, 119, 143, 155, 161, 175, 187, 203, 209, 215, 221, 235, 245, 247, 253, 275, 287, 295, 299, 319, 323, 329, 335, 355, 371, 377, 385, 391, 395, 403, 407, 413, 415, 437, 455, 473, 475, 493, 497, 515, 517, 527, 533, 535, 539, 551, 559, 575, 581
OFFSET
1,1
COMMENTS
No terms are divisible by 2 or 3; no terms are in A000961. - Robert Israel, Oct 10 2023
LINKS
MAPLE
with(numtheory):
q:= n-> (f-> ormap(d-> irem(d-1, f)>0, divisors(n)))(min(factorset(n))-1):
select(q, [$2..600])[]; # Alois P. Heinz, Feb 12 2021
MATHEMATICA
Select[Range[2, 600], Function[{d, k}, AnyTrue[d, Mod[#, k] != 0 &]] @@ {Divisors[#] - 1, FactorInteger[#][[1, 1]] - 1} &] (* Michael De Vlieger, Feb 12 2021 *)
PROG
(MATLAB)
n=300; % gives all terms of the sequence not exceeding n
A=[];
for i=2:n
lpf=2;
while mod(i, lpf)~=0
lpf=lpf+1;
end
for d=1:i
if mod(i, d)==0 && mod(d-1, lpf-1)~=0
A=[A i];
break
end
end
end
CROSSREFS
KEYWORD
nonn
AUTHOR
Maxim Karimov, Jan 02 2021
STATUS
approved