login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A340267
Maximum LCM of partitions of n into pairwise coprime parts that are >= 2.
1
2, 3, 4, 6, 6, 12, 15, 20, 30, 30, 60, 42, 84, 105, 140, 210, 210, 420, 280, 330, 360, 840, 504, 1260, 1155, 1540, 2310, 2520, 4620, 3080, 5460, 3960, 9240, 5544, 13860, 6930, 16380, 15015, 27720, 30030, 32760, 60060, 40040, 45045, 51480, 120120, 72072, 180180
OFFSET
2,1
COMMENTS
a(n) <= A123131(n).
LINKS
Fausto A. C. Cariboni, Table of n, a(n) for n = 2..260
EXAMPLE
For n=22 we have a(22) = 360 since 22 = 5 + 8 + 9 and lcm([5, 8, 9]) = 360.
Note a(22) = 360 < A123131(22) = 420.
PROG
(PARI) isok(p) = {for (i=1, #p, for (j=i+1, #p, if (gcd(p[i], p[j]) > 1, return(0)); ); ); return(1); }
a(n) = {my(x=1); forpart(p=n, if ((vecmin(p)>=2) && isok(p), x = max(x, lcm(Vec(p)))); ); x; } \\ Michel Marcus, Jan 03 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved