The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A340158 Numbers m such that m, m + 1, m + 2, m + 3 and m + 4 have k, 2k, 3k, 4k and 5k divisors respectively. 4
 211082, 2364062, 2774165, 3379802, 3743573, 4390682, 5651042, 5845442, 6708578, 7326122, 7371482, 8566394, 8839202, 9056282, 10154642, 10301333, 10325621, 10446242, 10540202, 11238341, 11719562, 11978762, 12377282, 12871058, 13456202, 16840058, 16954562, 17155141 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Numbers m such that tau(m) = tau(m + 1)/2 = tau(m + 2)/3 = tau(m + 3)/4 = tau(m + 4)/5, where tau(k) = the number of divisors of k (A000005). Quintuples of [tau(a(n)), tau(a(n) + 1), tau(a(n) + 2), tau(a(n) + 3), tau(a(n) + 4)] = [tau(a(n)), 2*tau(a(n)), 3*tau(a(n)), 4*tau(a(n)), 5*tau(a(n))]: [4, 8, 12, 16, 20], [4, 8, 12, 16, 20], [4, 8, 12, 16, 20], [8, 16, 24, 32, 40], [4, 8, 12, 16, 20], [4, 8, 12, 16, 20], ... Corresponding values of numbers k: 4, 4, 4, 8, 4, 4, 4, 4, 4, 8, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 8, 4, 4, 4, 4, 4, 4, 4, ... 1524085621 is the smallest prime term (see A294528). Subsequence of A063446, A339778 and A340157. LINKS EXAMPLE tau(211082) = 4, tau(211083) = 8, tau(211084) = 12, tau(211085) = 16, tau(211086) = 20. MATHEMATICA Select[Range[5*10^6], Equal @@ (DivisorSigma[0, # + {0, 1, 2, 3, 4}]/{1, 2, 3, 4, 5}) &] (* Amiram Eldar, Dec 30 2020 *) PROG (MAGMA) [m: m in [1..10^6] | #Divisors(m) eq #Divisors(m + 1)/2 and #Divisors(m) eq #Divisors(m + 2)/3 and #Divisors(m) eq #Divisors(m + 3)/4 and #Divisors(m) eq #Divisors(m + 4)/5] (PARI) isok(m) = my(k = numdiv(m)); (numdiv(m+1) == 2*k) && (numdiv(m+2) == 3*k) && (numdiv(m+3) == 4*k) && (numdiv(m+4) == 5*k); \\ Michel Marcus, Jan 16 2021 CROSSREFS Cf. A000005, A063446, A294528, A339778, A340157, A340159. Sequence in context: A072760 A178421 A069175 * A097021 A236086 A123103 Adjacent sequences:  A340155 A340156 A340157 * A340159 A340160 A340161 KEYWORD nonn AUTHOR Jaroslav Krizek, Dec 29 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 28 04:01 EST 2022. Contains 350654 sequences. (Running on oeis4.)