login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A340048
Numbers that are the sum of a cube s and a fourth power t such that 0 < s <= t.
0
2, 17, 24, 82, 89, 108, 145, 257, 264, 283, 320, 381, 472, 626, 633, 652, 689, 750, 841, 968, 1137, 1297, 1304, 1323, 1360, 1421, 1512, 1639, 1808, 2025, 2296, 2402, 2409, 2428, 2465, 2526, 2617, 2744, 2913, 3130, 3401, 3732, 4097, 4104, 4123, 4129, 4160, 4221, 4312
OFFSET
1,1
COMMENTS
Contains the entries of A340050 and numbers like 2, 8192, 1062882,.. which are 2 times 12th powers (A008456). - R. J. Mathar, Jan 05 2021
EXAMPLE
24 is in the sequence since 2^3 + 2^4 = 8 + 16 = 24, where 0 < 8 <= 16.
MAPLE
isA340048 := proc(n)
local t, s3 ;
for t from 0 do
s3 := n-t^4 ;
if s3 <= 0 then
return false ;
elif s3 <= t^4 and isA000578(s3) then
return true;
end if;
end do:
end proc:
for n from 1 do
if isA340048(n) then
printf("%d, \n", n) ;
end if;
end do: # R. J. Mathar, Jan 05 2021
MATHEMATICA
Table[If[Sum[(Floor[i^(1/3)] - Floor[(i - 1)^(1/3)]) (Floor[(n - i)^(1/4)] - Floor[(n - i - 1)^(1/4)]), {i, Floor[n/2]}] > 0, n, {}], {n, 1000}] // Flatten
PROG
(Python)
def aupto(lim):
cubes = [i**3 for i in range(1, int(lim**(1/3))+2)]
fours = [i**4 for i in range(1, int(lim**(1/4))+2)]
return sorted(s+t for s in cubes for t in fours if t >= s and s+t <= lim)
print(aupto(4312)) # Michael S. Branicky, Feb 17 2021
CROSSREFS
Cf. A010057.
Sequence in context: A049562 A107137 A086322 * A164275 A284646 A270344
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Dec 26 2020
STATUS
approved