login
A340042
Numbers that are the sum of a cube s and a square t such that 0 < s < t.
0
5, 10, 17, 24, 26, 33, 37, 44, 50, 57, 63, 65, 72, 76, 82, 89, 91, 101, 108, 122, 127, 129, 145, 148, 152, 164, 170, 171, 177, 185, 196, 197, 204, 208, 223, 226, 233, 252, 257, 260, 264, 269, 283, 289, 290, 294, 297, 316, 320, 321, 325, 332, 350, 351, 353, 362, 369, 381
OFFSET
1,1
EXAMPLE
17 is in the sequence since 1^3 + 4^2 = 1 + 16 = 17, where 0 < 1 < 16.
MATHEMATICA
Table[If[Sum[(Floor[i^(1/3)] - Floor[(i - 1)^(1/3)]) (Floor[(n - i)^(1/2)] - Floor[(n - i - 1)^(1/2)]), {i, Floor[(n - 1)/2]}] > 0, n, {}], {n, 500}] // Flatten
CROSSREFS
Sequence in context: A313987 A071978 A313988 * A307028 A276382 A105705
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Dec 26 2020
STATUS
approved