login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A340006
Number of times the n-th prime (=A000040(n)) occurs in A060270.
3
0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 2, 0, 1, 3, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 3, 1, 0, 1, 1, 0, 2, 1, 1, 0, 0, 0, 1, 0, 2, 2, 1, 1, 2, 1, 0, 1, 0, 0, 0, 0, 2, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 2
OFFSET
1,21
COMMENTS
Each term in A060270 is either 1 or a prime number. Moreover it is known that each prime occurs only a finite number of times in A060270.
By excluding the terms that equal one from A060270, we observe the smallest value of A060270(n)/log(A002110(n)) in the range n = 2..1000 to be ~1.014. From this it is believed that the primes less than 0.9*log(A002110(1001))*1.014 (~ 7138) will not occur anymore in the sequence A060270 for n > 1000; the applied factor 0.9 is a safety factor to be more or less sure that the prime numbers up to about 7138 will no longer occur in A060270.
FORMULA
It seems that Sum_{k = 1..n} a(k) ~ 0.2*A000040(n)/log(log(A000040(n))).
EXAMPLE
The prime number 7 does not occur in A060270, and A000040(4) = 7, so a(4) = 0.
The prime number 11 occurs 1 time in A060270, and A000040(5) = 11, so a(5) = 1.
CROSSREFS
See also A339274, A339959 (n!).
Sequence in context: A181940 A356154 A261209 * A093555 A065432 A094184
KEYWORD
nonn
AUTHOR
A.H.M. Smeets, Dec 26 2020
STATUS
approved