login
A339954
Primes q such that (p+2*q+r)/6 is a prime, where p,q,r are consecutive primes.
2
7, 11, 17, 19, 43, 71, 101, 107, 109, 127, 197, 227, 349, 461, 691, 701, 719, 857, 863, 881, 919, 929, 967, 1091, 1279, 1423, 1429, 1451, 1487, 1597, 1637, 1847, 1873, 1933, 1949, 2141, 2237, 2239, 2801, 2803, 2819, 3023, 3121, 3167, 3373, 3463, 3467, 3709, 4127, 4129, 4153, 4517, 4637, 4787
OFFSET
1,1
LINKS
FORMULA
(A151799(a(n))+2*a(n)+A151800(a(n)))/6 = A339953(n).
EXAMPLE
a(3) = 17 is a term because 13, 17, 19 are consecutive primes and (13+2*17+19)/6 = 11 is a prime.
MAPLE
q:= 2: r:= 3:
count:= 0: R:= NULL:
while count < 100 do
p:= q; q:= r; r:= nextprime(r);
w:= (p+2*q+r)/6;
if w::integer and isprime(w) then
count:= count+1; R:= R, q;
fi
od:
R;
CROSSREFS
KEYWORD
nonn
AUTHOR
J. M. Bergot and Robert Israel, Dec 24 2020
STATUS
approved