login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A339761
Number of (undirected) Hamiltonian paths in the 3 X n king graph.
6
1, 48, 392, 4678, 43676, 406396, 3568906, 30554390, 254834078, 2085479610, 16791859330, 133416458104, 1048095087616, 8154539310958, 62918331433308, 481954854686434, 3668399080453520, 27766093432542984, 209120844634276158, 1568050593805721822
OFFSET
1,2
LINKS
Eric Weisstein's World of Mathematics, Graph Path
Eric Weisstein's World of Mathematics, King Graph
Index entries for linear recurrences with constant coefficients, signature (15,-36,-289,708,2617,-1278,-4641,2263,4808,3286,-1422,-3830,-2200, -432,216,216).
FORMULA
G.f.: x*(1 + 33*x - 292*x^2 + 815*x^3 + 782*x^4 - 3649*x^5 - 4630*x^6 + 1517*x^7 + 3835*x^8 - 3822*x^9 - 5722*x^10 - 5418*x^11 - 7562*x^12 - 4808*x^13 - 240*x^14 + 720*x^15 + 216*x^16)/((1 - x)*(1 - 4*x - 15*x^2 - 8*x^3 - 6*x^4)^2*(1 - 6*x - 12*x^2 + 27*x^3 - 2*x^4 - 30*x^5 - 4*x^6 + 6*x^7)). - Andrew Howroyd, Jan 17 2022
PROG
(Python)
# Using graphillion
from graphillion import GraphSet
def make_nXk_king_graph(n, k):
grids = []
for i in range(1, k + 1):
for j in range(1, n):
grids.append((i + (j - 1) * k, i + j * k))
if i < k:
grids.append((i + (j - 1) * k, i + j * k + 1))
if i > 1:
grids.append((i + (j - 1) * k, i + j * k - 1))
for i in range(1, k * n, k):
for j in range(1, k):
grids.append((i + j - 1, i + j))
return grids
def A(start, goal, n, k):
universe = make_nXk_king_graph(n, k)
GraphSet.set_universe(universe)
paths = GraphSet.paths(start, goal, is_hamilton=True)
return paths.len()
def B(n, k):
m = k * n
s = 0
for i in range(1, m):
for j in range(i + 1, m + 1):
s += A(i, j, n, k)
return s
def A339761(n):
return B(n, 3)
print([A339761(n) for n in range(1, 11)])
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Dec 16 2020
STATUS
approved