login
A339579
a(n) = least nonnegative integer k such that n*2^k - 1 is composite.
8
4, 3, 5, 2, 0, 4, 0, 1, 0, 0, 0, 3, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 3, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0
OFFSET
1,1
COMMENTS
Conjectured to grow without limit.
A063377 is an essentially identical sequence, although with a slightly different definition, different initial terms, and different offset.
REFERENCES
Carl Pomerance, Problem 81:21 (= 321), in R. K. Guy problem list.
LINKS
R. K. Guy, editor, Western Number Theory Problems, 1985-12-21 & 23, Typescript, Jul 13 1986, Dept. of Math. and Stat., Univ. Calgary, 11 pages. Annotated scan of pages 1, 3, 7, 9, with permission.
FORMULA
For n >= 3, a(n) = A063377(n-1).
PROG
(PARI) A339579(n) = for(k=0, oo, my(t=(n*(2^k))-1); if((t>1)&&!isprime(t), return(k))); \\ Antti Karttunen, Dec 24 2020
CROSSREFS
See A339580 for records.
Sequence in context: A274260 A011397 A352692 * A081665 A131911 A254037
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Dec 24 2020
STATUS
approved