login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A339443
Pairwise listing of the partitions of k into two parts (s,t), with 0 < t <= s ordered by decreasing values of s and where k = 2,3,... .
7
1, 1, 2, 1, 3, 1, 2, 2, 4, 1, 3, 2, 5, 1, 4, 2, 3, 3, 6, 1, 5, 2, 4, 3, 7, 1, 6, 2, 5, 3, 4, 4, 8, 1, 7, 2, 6, 3, 5, 4, 9, 1, 8, 2, 7, 3, 6, 4, 5, 5, 10, 1, 9, 2, 8, 3, 7, 4, 6, 5, 11, 1, 10, 2, 9, 3, 8, 4, 7, 5, 6, 6, 12, 1, 11, 2, 10, 3, 9, 4, 8, 5, 7, 6, 13, 1, 12, 2, 11
OFFSET
1,3
FORMULA
a(n) = (1-(-1)^n)*(1+floor(sqrt(2*n-1)))/2-(((-1)^n-2*n-1)/2 + 2*Sum_{k=1..-1+floor(sqrt(2*n-2-(-1)^n))} floor((k+1)/2))*(-1)^n/2.
a(n) = A339399(A103889(n)). - Wesley Ivan Hurt, May 09 2021
EXAMPLE
[9,1]
[7,1] [8,1] [8,2]
[5,1] [6,1] [6,2] [7,2] [7,3]
[3,1] [4,1] [4,2] [5,2] [5,3] [6,3] [6,4]
[1,1] [2,1] [2,2] [3,2] [3,3] [4,3] [4,4] [5,4] [5,5]
k 2 3 4 5 6 7 8 9 10
--------------------------------------------------------------------------
k Nonincreasing partitions of k
--------------------------------------------------------------------------
2 1,1
3 2,1
4 3,1,2,2
5 4,1,3,2
6 5,1,4,2,3,3
7 6,1,5,2,4,3
8 7,1,6,2,5,3,4,4
9 8,1,7,2,6,3,5,4
10 9,1,8,2,7,3,6,4,5,5
...
MATHEMATICA
Table[(1 - (-1)^n) (1 + Floor[Sqrt[2 n - 1]])/2 - (((-1)^n - 2 n - 1)/2 + 2 Sum[Floor[(k + 1)/2], {k, -1 + Floor[Sqrt[2 n - 2 - (-1)^n]]}]) (-1)^n/2, {n, 100}]
CROSSREFS
Bisections: A199474, A122197.
Sequence in context: A227872 A323165 A091948 * A369323 A342655 A161901
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Dec 05 2020
STATUS
approved