login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of compositions (ordered partitions) of n into a prime number of distinct prime parts.
1

%I #13 Mar 01 2022 05:32:10

%S 0,0,0,0,0,2,0,2,2,2,8,0,8,2,8,8,10,0,16,8,16,14,16,12,18,14,22,18,

%T 136,18,138,26,22,26,258,30,266,30,266,158,492,36,506,158,510,278,744,

%U 174,748,290,758,528,990,306,1228,668,1116,780,6384,678,6630,800,1720,1274

%N Number of compositions (ordered partitions) of n into a prime number of distinct prime parts.

%H Alois P. Heinz, <a href="/A339434/b339434.txt">Table of n, a(n) for n = 0..10000</a>

%H <a href="/index/Com#comp">Index entries for sequences related to compositions</a>

%e a(10) = 8 because we have [7, 3], [3, 7], [5, 3, 2], [5, 2, 3], [3, 5, 2], [3, 2, 5], [2, 5, 3] and [2, 3, 5].

%p s:= proc(n) option remember; `if`(n<1, 0, ithprime(n)+s(n-1)) end:

%p b:= proc(n, i, t) option remember; `if`(s(i)<n, 0,

%p `if`(n=0, `if`(isprime(t), t!, 0), (p->`if`(p>n, 0,

%p b(n-p, i-1, t+1)))(ithprime(i))+b(n, i-1, t)))

%p end:

%p a:= n-> b(n, numtheory[pi](n), 0):

%p seq(a(n), n=0..70); # _Alois P. Heinz_, Dec 04 2020

%t s[n_] := s[n] = If[n < 1, 0, Prime[n] + s[n - 1]];

%t b[n_, i_, t_] := b[n, i, t] = If[s[i] < n, 0,

%t If[n == 0, If[PrimeQ[t], t!, 0], Function[p, If[p > n, 0,

%t b[n - p, i - 1, t + 1]]][Prime[i]] + b[n, i - 1, t]]];

%t a[n_] := b[n, PrimePi[n], 0];

%t Table[a[n], {n, 0, 70}] (* _Jean-François Alcover_, Mar 01 2022, after _Alois P. Heinz_ *)

%Y Cf. A000040, A045450, A052467, A085755, A085756, A102623, A219107.

%K nonn,look

%O 0,6

%A _Ilya Gutkovskiy_, Dec 04 2020