login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A339434
Number of compositions (ordered partitions) of n into a prime number of distinct prime parts.
1
0, 0, 0, 0, 0, 2, 0, 2, 2, 2, 8, 0, 8, 2, 8, 8, 10, 0, 16, 8, 16, 14, 16, 12, 18, 14, 22, 18, 136, 18, 138, 26, 22, 26, 258, 30, 266, 30, 266, 158, 492, 36, 506, 158, 510, 278, 744, 174, 748, 290, 758, 528, 990, 306, 1228, 668, 1116, 780, 6384, 678, 6630, 800, 1720, 1274
OFFSET
0,6
EXAMPLE
a(10) = 8 because we have [7, 3], [3, 7], [5, 3, 2], [5, 2, 3], [3, 5, 2], [3, 2, 5], [2, 5, 3] and [2, 3, 5].
MAPLE
s:= proc(n) option remember; `if`(n<1, 0, ithprime(n)+s(n-1)) end:
b:= proc(n, i, t) option remember; `if`(s(i)<n, 0,
`if`(n=0, `if`(isprime(t), t!, 0), (p->`if`(p>n, 0,
b(n-p, i-1, t+1)))(ithprime(i))+b(n, i-1, t)))
end:
a:= n-> b(n, numtheory[pi](n), 0):
seq(a(n), n=0..70); # Alois P. Heinz, Dec 04 2020
MATHEMATICA
s[n_] := s[n] = If[n < 1, 0, Prime[n] + s[n - 1]];
b[n_, i_, t_] := b[n, i, t] = If[s[i] < n, 0,
If[n == 0, If[PrimeQ[t], t!, 0], Function[p, If[p > n, 0,
b[n - p, i - 1, t + 1]]][Prime[i]] + b[n, i - 1, t]]];
a[n_] := b[n, PrimePi[n], 0];
Table[a[n], {n, 0, 70}] (* Jean-François Alcover, Mar 01 2022, after Alois P. Heinz *)
KEYWORD
nonn,look
AUTHOR
Ilya Gutkovskiy, Dec 04 2020
STATUS
approved