login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A339241
Number of partitions of n into prime power parts (including 1) where every part appears at least 2 times.
1
1, 0, 1, 1, 2, 1, 4, 2, 6, 5, 9, 7, 15, 11, 21, 19, 31, 27, 46, 40, 63, 60, 88, 83, 124, 117, 166, 165, 224, 222, 303, 301, 399, 407, 525, 537, 691, 707, 893, 929, 1153, 1202, 1485, 1550, 1890, 1992, 2400, 2534, 3040, 3212, 3818, 4059, 4781, 5089, 5972, 6359, 7412
OFFSET
0,5
FORMULA
G.f.: (1 + x^2 / (1 - x)) * Product_{p prime, k>=1} (1 + x^(2*p^k) / (1 - x^(p^k))).
EXAMPLE
a(6) = 4 because we have [3, 3], [2, 2, 2], [2, 2, 1, 1] and [1, 1, 1, 1, 1, 1].
MATHEMATICA
nmax = 56; CoefficientList[Series[(1 + x^2/(1 - x)) Product[1 + Boole[PrimePowerQ[k]] x^(2 k)/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Nov 28 2020
STATUS
approved