Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Dec 10 2023 17:29:50
%S 1,1,1,3,1,5,1,7,9,1,9,15,1,11,23,25,1,13,33,41,1,15,45,65,67,1,17,59,
%T 99,109,1,19,75,145,175,177,1,21,93,205,275,287,1,23,113,281,421,463,
%U 465,1,25,135,375,627,739,753,1,27,159,489,909,1161,1217,1219
%N Irregular triangle of incomplete Leonardo numbers read by rows. T(n, k) = 2*(Sum_{j=0..k} binomial(n-j, j)) - 1, for n>=0 and 0<=k<=floor(n/2).
%H P. Catarino and A. Borges, <a href="http://math.colgate.edu/~integers/u43/u43.pdf">A Note on Incomplete Leonardo Numbers</a>, INTEGERS 20A (2020) A43.
%F T(n, floor(n/2)) = A001595(n).
%e Triangle begins:
%e 1;
%e 1;
%e 1, 3;
%e 1, 5;
%e 1, 7, 9;
%e 1, 9, 15;
%e 1, 11, 23, 25;
%e 1, 13, 33, 41;
%e 1, 15, 45, 65, 67;
%e 1, 17, 59, 99, 109;
%e ...
%t T[n_, k_] := 2 * Sum[Binomial[n - j, j], {j, 0, k}] - 1; Table[T[n, k], {n, 0, 14}, {k, 0, Floor[n/2]}] // Flatten (* _Amiram Eldar_, Nov 28 2020 *)
%o (PARI) T(n, k) = 2*sum(j=0, k, binomial(n-j, j)) -1;
%o row(n) = vector(n\2+1, k, k--; T(n,k));
%Y Cf. A001595 (Leonardo numbers: right diagonal).
%Y Cf. A000012 (column 0), A005408 (column 1), A027688 (column 2).
%K nonn,tabf
%O 0,4
%A _Michel Marcus_, Nov 28 2020