login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A339236
Irregular triangle of incomplete Leonardo numbers read by rows. T(n, k) = 2*(Sum_{j=0..k} binomial(n-j, j)) - 1, for n>=0 and 0<=k<=floor(n/2).
0
1, 1, 1, 3, 1, 5, 1, 7, 9, 1, 9, 15, 1, 11, 23, 25, 1, 13, 33, 41, 1, 15, 45, 65, 67, 1, 17, 59, 99, 109, 1, 19, 75, 145, 175, 177, 1, 21, 93, 205, 275, 287, 1, 23, 113, 281, 421, 463, 465, 1, 25, 135, 375, 627, 739, 753, 1, 27, 159, 489, 909, 1161, 1217, 1219
OFFSET
0,4
LINKS
P. Catarino and A. Borges, A Note on Incomplete Leonardo Numbers, INTEGERS 20A (2020) A43.
FORMULA
T(n, floor(n/2)) = A001595(n).
EXAMPLE
Triangle begins:
1;
1;
1, 3;
1, 5;
1, 7, 9;
1, 9, 15;
1, 11, 23, 25;
1, 13, 33, 41;
1, 15, 45, 65, 67;
1, 17, 59, 99, 109;
...
MATHEMATICA
T[n_, k_] := 2 * Sum[Binomial[n - j, j], {j, 0, k}] - 1; Table[T[n, k], {n, 0, 14}, {k, 0, Floor[n/2]}] // Flatten (* Amiram Eldar, Nov 28 2020 *)
PROG
(PARI) T(n, k) = 2*sum(j=0, k, binomial(n-j, j)) -1;
row(n) = vector(n\2+1, k, k--; T(n, k));
CROSSREFS
Cf. A001595 (Leonardo numbers: right diagonal).
Cf. A000012 (column 0), A005408 (column 1), A027688 (column 2).
Sequence in context: A197943 A318828 A318827 * A029669 A050329 A147005
KEYWORD
nonn,tabf
AUTHOR
Michel Marcus, Nov 28 2020
STATUS
approved