login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A339163
Number of compositions (ordered partitions) of n into distinct parts, the least being 2.
8
0, 0, 1, 0, 0, 2, 2, 2, 2, 8, 8, 14, 14, 20, 44, 50, 74, 104, 128, 158, 326, 356, 524, 698, 986, 1160, 1592, 2606, 3158, 4316, 5708, 7706, 10082, 12920, 16136, 25718, 30614, 41756, 53396, 71978, 91058, 122144, 149384, 193670, 279614, 342860, 447764, 581234
OFFSET
0,6
FORMULA
G.f.: Sum_{k>=1} k! * x^(k*(k + 3)/2) / Product_{j=1..k-1} (1 - x^j).
EXAMPLE
a(9) = 8 because we have [7, 2], [4, 3, 2], [4, 2, 3], [3, 4, 2], [3, 2, 4], [2, 7], [2, 4, 3] and [2, 3, 4].
MAPLE
b:= proc(n, i, p) option remember;
`if`(n=0, p!, `if`((i-2)*(i+3)/2<n, 0,
add(b(n-i*j, i-1, p+j), j=0..min(1, n/i))))
end:
a:= n-> `if`(n<2, 0, b(n-2$2, 1)):
seq(a(n), n=0..55); # Alois P. Heinz, Nov 25 2020
MATHEMATICA
nmax = 47; CoefficientList[Series[Sum[k! x^(k (k + 3)/2)/Product[1 - x^j, {j, 1, k - 1}], {k, 1, nmax}], {x, 0, nmax}], x]
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Nov 25 2020
STATUS
approved