

A338986


Number of rooted graceful permutations of length n.


2



1, 1, 2, 4, 4, 8, 12, 4, 12, 12, 16, 20, 28, 12, 12, 60, 16, 20, 40, 48, 48, 52, 44, 76, 52, 72, 80, 68, 60, 136, 148, 152, 72, 216, 116, 140, 116, 184, 408, 176, 404, 288, 412, 440, 356, 384, 464, 256, 704, 444, 812, 560, 348, 904, 800, 1088, 628, 716, 868
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,3


COMMENTS

A permutation p[1]...p[n] of {1,...n} is graceful if the n1 differences p[j+1] p[j] are distinct. It is rooted if, in addition, p[j+1]  p[j] = k < n1 implies that either p[j]  p[j1] > k or p[j+2]  p[j+1] > k.


LINKS

Don Knuth, Table of n, a(n) for n = 0..173


EXAMPLE

For n = 6 the a(6) = 12 solutions are 162534, 251643, 316254, 325164, 342516, 346152, 431625, 435261, 452613, 461523, 526134, 615243.


CROSSREFS

A006967 counts all graceful permutations.
If n > 2, a(n) = 4*A338988(n).
Sequence in context: A227333 A223317 A027131 * A319803 A055946 A130124
Adjacent sequences: A338983 A338984 A338985 * A338987 A338988 A338989


KEYWORD

nonn


AUTHOR

Don Knuth, Dec 20 2020


STATUS

approved



