login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A338981 Number of unoriented colorings of the 120 dodecahedral facets of the 4-D 120-cell (or 120 vertices of the 4-D 600-cell) using exactly n colors. 6
0, 1, 92307499707443390526727850063502, 124792381938502167392061689732085833655832902312754962, 122697712831831745940423467267565845711242845618544066030140191642464 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Each chiral pair is counted as one when enumerating unoriented arrangements. The Schläfli symbols of the 120-cell and 600-cell are {5,3,3} and {3,3,5} respectively. They are mutually dual. For n>120, a(n) = 0.

Sequences for other elements of the 120-cell and 600-cell are not suitable for the OEIS as the first significant datum is too big. We provide generating functions here using bp(j) = Sum_{k=1..j} k! * S2(j,k) * x^k.

For the 600 facets of the 600-cell (vertices of the 120-cell), the generating function is bp(20)/15 + bp(30)/10 + bp(40)/15 + bp(50)/12 + 43*bp(60)/300 + bp(66)/10 + bp(100)/360 + bp(104)/9 + bp(114)/12 + 13*bp(120)/300 + bp(150)/240 + bp(152)/8 + bp(200)/360 + bp(208)/36 + 61*bp(300)/14400 + bp(302)/32 + bp(330)/240 + bp(600)/14400.

For the 720 pentagonal faces of the 120-cell (edges of the 600-cell), the generating function is bp(24)/15 + bp(36)/10 + bp(48)/15 + bp(60)/12 + 7*bp(72)/300 + 3*bp(76)/25 + bp(84)/10 + 41*bp(120)/360 + bp(132)/12 + 7*bp(144)/300 + bp(152)/50 + bp(180)/240 + bp(182)/8 + 11*bp(240)/360 + 61*bp(360)/14400 + bp(364)/32 + bp(396)/240 + bp(720)/14400.

For the 1200 edges of the 120-cell (triangular faces of the 600-cell), the generating function is bp(40)/15 + bp(60)/10 + bp(80)/15 + bp(100)/12 + 43*bp(120)/300 + bp(128)/10 + bp(200)/360 + bp(202)/9 + bp(216)/12 + 13*bp(240)/300 + bp(300)/240 + bp(302)/8 + bp(400)/360 + bp(404)/36 + 61*bp(600)/14400 + bp(604)/32 + bp(640)/240 + bp(1200)/14400.

LINKS

Robert A. Russell, Table of n, a(n) for n = 0..120

FORMULA

A338965(n) = Sum_{j=1..Min(n,120)} a(n) * binomial(n,j).

a(n) = A338980(n) - A338982(n) = (A338980(n) + A338983(n)) / 2 = A338982(n) + A338983(n).

G.f.: bp(4)/15 + bp(6)/10 + bp(8)/15 + bp(10)/12 + 7bp(12)/300 + bp(16)/50 + bp(17)/10 + bp(19)/10 + bp(20)/360 + bp(22)/36 + bp(23)/12 + 7bp(24)/300 + bp(27)/12 + bp(30)/240 + bp(31)/8 + bp(32)/50 + bp(40)/360 + bp(44)/36 + bp(60)/14400 + bp(61)/240 + bp(62)/32 + bp(75)/240 + bp(120)/14400, where bp(j) = Sum_{k=1..j} k! * S2(j,k) * x^k and S2(j,k) is the Stirling subset number, A008277.

MATHEMATICA

bp[j_] := Sum[k! StirlingS2[j, k] x^k, {k, j}] (*binomial series*)

CoefficientList[bp[4]/15+bp[6]/10+bp[8]/15+bp[10]/12+7bp[12]/300+bp[16]/50+bp[17]/10+bp[19]/10+bp[20]/360+bp[22]/36+bp[23]/12+7bp[24]/300+bp[27]/12+bp[30]/240+bp[31]/8+bp[32]/50+bp[40]/360+bp[44]/36+bp[60]/14400+bp[61]/240+bp[62]/32+bp[75]/240+bp[120]/14400, x]

CROSSREFS

Cf. A338980 (oriented), A338982 (chiral), A338983 (achiral), A338965 (up to n colors), A000389 (5-cell), A128767 (8-cell vertices, 16-cell facets), A337957 (16-cell vertices, 8-cell facets), A338949 (24-cell).

Sequence in context: A120318 A338982 A338966 * A338965 A095458 A338980

Adjacent sequences:  A338978 A338979 A338980 * A338982 A338983 A338984

KEYWORD

fini,nonn,easy

AUTHOR

Robert A. Russell, Dec 13 2020

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 1 13:45 EDT 2022. Contains 354973 sequences. (Running on oeis4.)