login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A338856
Decimal expansion of Sum_{k>=0} binomial(4*k,2*k)^2 / (2^(8*k) * (2*k + 1)).
0
1, 0, 8, 9, 8, 6, 6, 7, 3, 2, 2, 9, 0, 7, 4, 7, 9, 3, 5, 3, 2, 5, 8, 0, 1, 7, 9, 5, 8, 0, 7, 2, 9, 6, 3, 6, 0, 4, 8, 5, 5, 1, 6, 9, 7, 7, 7, 7, 8, 1, 3, 6, 3, 3, 9, 8, 3, 1, 9, 6, 0, 9, 4, 7, 2, 0, 7, 0, 5, 7, 8, 3, 6, 7, 6, 8, 3, 0, 4, 4, 5, 6, 1, 3, 2, 4, 1, 3, 2, 9, 7, 9, 6, 0, 2, 7, 6, 2, 1, 5, 6, 7, 8, 2, 5
OFFSET
1,3
REFERENCES
Pablo Fernandez Refolio, Problem 12180, The American Mathematical Monthly 127, April 2020, p. 373.
FORMULA
Equals 2/Pi + sqrt(Pi/2) / Gamma(3/4)^2 - sqrt(2) * Gamma(3/4)^2 / Pi^(3/2).
Equals hypergeom([1/4, 1/4, 3/4, 3/4], [1/2, 1, 3/2], 1).
EXAMPLE
1.0898667322907479353258017958072963604855169777781363398319609472070578367683...
MAPLE
evalf(2/Pi + sqrt(Pi/2) / GAMMA(3/4)^2 - sqrt(2) * GAMMA(3/4)^2 / Pi^(3/2), 120);
MATHEMATICA
RealDigits[2/Pi + Sqrt[Pi/2]/Gamma[3/4]^2 - Sqrt[2]*Gamma[3/4]^2/Pi^(3/2), 10, 100][[1]]
N[HypergeometricPFQ[{1/4, 1/4, 3/4, 3/4}, {1/2, 1, 3/2}, 1], 120]
CROSSREFS
Sequence in context: A374813 A265296 A230154 * A182999 A356532 A019873
KEYWORD
nonn,cons
AUTHOR
Vaclav Kotesovec, Nov 12 2020
STATUS
approved