login
a(n) = sum of 4th powers of entries in row n of Stern's triangle A337277.
0

%I #10 Apr 07 2022 11:16:38

%S 1,3,37,395,4277,46251,500213,5409835,58507765,632765739,6843407605,

%T 74011952171,800444658677,8656867341099,93624651434741,

%U 1012557431099947,10950882439229941,118434591969329451,1280878746784164085,13852797030687146027,149819009843990278133

%N a(n) = sum of 4th powers of entries in row n of Stern's triangle A337277.

%H Richard P. Stanley, <a href="https://arxiv.org/abs/1901.04647">Some Linear Recurrences Motivated by Stern's Diatomic Array</a>, arXiv:1901.04647 [math.CO], 2019. Also American Mathematical Monthly 127.2 (2020): 99-111.

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (10,9,-2).

%F G.f.: -(2*x^2+7*x-1)/((x+1)*(2*x^2-11*x+1)). - _Alois P. Heinz_, Nov 19 2020

%t LinearRecurrence[{10,9,-2},{1,3,37},30] (* _Harvey P. Dale_, Apr 07 2022 *)

%Y Cf. A337277.

%Y For 2nd and 3rd powers see A052984, A169634.

%K nonn,easy

%O 0,2

%A _N. J. A. Sloane_, Nov 19 2020