Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #34 Nov 13 2020 14:20:13
%S 2,12,36,80,252,810,1100,1452,2366,2940,5202,12696,14400,16250,20412,
%T 22736,27900,33792,40460,52022,56316,70602,75852,93150,112896,120050,
%U 143312,169400,198476,242172,254016,291852,305252,410700,518400,538002,643452,689216,737100
%N Integers m such that there exist one prime p and one positive integer k, for which the expression k^3 + k^2*p is a perfect cube m^3.
%C This concerns Problem 131 of Project Euler (see link).
%C For each such term m with this property, the values of k and of p are unique.
%C The solution to the Diophantine equation is: (q^3)^3 + (q^3)^2 * ((q+1)^3 - q^3) = ((q+1) * q^2)^3, where
%C - the prime p is the cuban prime (q+1)^3 - q^3 = A002407(n),
%C - corresponding to q = A111251(n),
%C - the positive integer k = q^3, and,
%C - the resulting m = (q+1)*q^2 = (A111251(n)+1)*(A111251(n))^2.
%H Robert Israel, <a href="/A338610/b338610.txt">Table of n, a(n) for n = 1..10000</a>
%H Project Euler, <a href="https://projecteuler.net/problem=131">Problem 131: Prime cube partnership</a>.
%F a(n) = (A111251(n) + 1)*(A111251(n))^2.
%F a(n) = A011379(A111251(n)).
%e For n=1, q=A111251(1)=1 and 1^3 + 1^2*(2^3 - 1^3) = 1+1*7 = 2^3, hence, k=1^3, cuban prime=7, and a(1)=m=2.
%e For n=3, q=A111251(3)=3 and (3^3)^3 + (3^3)^2*(4^3 - 3^3) = 27^3 + 27^2*37 = 46656 = 36^3, hence, k=3^3, cuban prime=37, and a(3)=m=36.
%p for q from 1 to 90 do
%p p:=3*q^2+3*q+1;
%p if isprime(p) then print((q+1)*q^2); else fi; od:
%t f[n_] := n^2*(n+1); f /@ Select[Range[100], PrimeQ[3*#^2 + 3*# + 1] &] (* _Amiram Eldar_, Nov 05 2020 *)
%o (PARI) lista(nn) = apply(x->x^2*(x+1), select(x->isprime(3*x^2 + 3*x + 1), [1..nn])); \\ _Michel Marcus_, Nov 05 2020
%Y Cf. A002407, A111251.
%Y Subsequence of A011379.
%K nonn
%O 1,1
%A _Bernard Schott_, Nov 03 2020