login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A338610
Integers m such that there exist one prime p and one positive integer k, for which the expression k^3 + k^2*p is a perfect cube m^3.
1
2, 12, 36, 80, 252, 810, 1100, 1452, 2366, 2940, 5202, 12696, 14400, 16250, 20412, 22736, 27900, 33792, 40460, 52022, 56316, 70602, 75852, 93150, 112896, 120050, 143312, 169400, 198476, 242172, 254016, 291852, 305252, 410700, 518400, 538002, 643452, 689216, 737100
OFFSET
1,1
COMMENTS
This concerns Problem 131 of Project Euler (see link).
For each such term m with this property, the values of k and of p are unique.
The solution to the Diophantine equation is: (q^3)^3 + (q^3)^2 * ((q+1)^3 - q^3) = ((q+1) * q^2)^3, where
- the prime p is the cuban prime (q+1)^3 - q^3 = A002407(n),
- corresponding to q = A111251(n),
- the positive integer k = q^3, and,
- the resulting m = (q+1)*q^2 = (A111251(n)+1)*(A111251(n))^2.
FORMULA
a(n) = (A111251(n) + 1)*(A111251(n))^2.
a(n) = A011379(A111251(n)).
EXAMPLE
For n=1, q=A111251(1)=1 and 1^3 + 1^2*(2^3 - 1^3) = 1+1*7 = 2^3, hence, k=1^3, cuban prime=7, and a(1)=m=2.
For n=3, q=A111251(3)=3 and (3^3)^3 + (3^3)^2*(4^3 - 3^3) = 27^3 + 27^2*37 = 46656 = 36^3, hence, k=3^3, cuban prime=37, and a(3)=m=36.
MAPLE
for q from 1 to 90 do
p:=3*q^2+3*q+1;
if isprime(p) then print((q+1)*q^2); else fi; od:
MATHEMATICA
f[n_] := n^2*(n+1); f /@ Select[Range[100], PrimeQ[3*#^2 + 3*# + 1] &] (* Amiram Eldar, Nov 05 2020 *)
PROG
(PARI) lista(nn) = apply(x->x^2*(x+1), select(x->isprime(3*x^2 + 3*x + 1), [1..nn])); \\ Michel Marcus, Nov 05 2020
CROSSREFS
Subsequence of A011379.
Sequence in context: A353503 A176583 A011379 * A369175 A073404 A141208
KEYWORD
nonn
AUTHOR
Bernard Schott, Nov 03 2020
STATUS
approved