The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A338472 (1 + Sum_{k(even)=2..p-1} 2*k^(p-1))/p as p runs through the odd primes. 0
 3, 109, 14519, 2024592291, 1536463613637, 2449395996564189425, 4686662617019462175259, 33724155827962966577589860263, 2606282943971359343146382147809434583605, 15159042500551578738018590862773479717960671, 6576976543997974825092367662248938303820921894460988333 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Conjecture: (1 + Sum_{k(even)=2..p-1} 2*k^(p-1))/p is an integer iff p is an odd prime. LINKS Table of n, a(n) for n=1..11. MATHEMATICA a[n_] := Module[{p = Prime[n + 1]}, (1 + 2 * Sum[k^(p - 1), {k, 2, p - 1, 2}])/p]; Array[a, 11] (* Amiram Eldar, Oct 29 2020 *) PROG (PARI) a(n) = my(p=prime(n+1)); (1 + sum(k=1, (p-1)\2, 2*(2*k)^(p-1)))/p; \\ Michel Marcus, Oct 29 2020 CROSSREFS Cf. A055030. Sequence in context: A142533 A089904 A092252 * A201001 A243464 A114738 Adjacent sequences: A338469 A338470 A338471 * A338473 A338474 A338475 KEYWORD nonn AUTHOR Davide Rotondo, Oct 29 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 7 18:28 EST 2023. Contains 367660 sequences. (Running on oeis4.)