The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A338291 Matrix inverse of the rascal triangle (A077028), read across rows.. 1
1, -1, 1, 1, -2, 1, -1, 3, -3, 1, 2, -6, 7, -4, 1, -6, 18, -21, 13, -5, 1, 24, -72, 84, -52, 21, -6, 1, -120, 360, -420, 260, -105, 31, -7, 1, 720, -2160, 2520, -1560, 630, -186, 43, -8, 1, -5040, 15120, -17640, 10920, -4410, 1302, -301, 57, -9, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,5
COMMENTS
The columns of this triangle are related to factorial numbers (A000142).
There is a family of triangles T(m;n,k) = 1 + m*k*(n-k) for some fixed integer m (for m >= 0 see A296180, Comments) and 0 <= k <= n. They satisfy the equation T(-m;n,k) = 2 - T(m;n,k). The corresponding matrices inverse M = T^(-1) are given by: M(m;n,n) = 1 for n >= 0, and M(m;n,n-1) = m*(1-n) - 1 for n > 0, and M(m;n,k) = (-1)^(n-k) * m * (m * k*(k+1) + 1) * Product_{i=k+1..n-2} (m*(i+1) - 1) for 0 <= k <= n-2. For special cases of the M(m;n,k) see A338817 (m=-1), and A167374 (m=0), and this triangle (m=1).
LINKS
FORMULA
T(n,n) = 1 for n >= 0, and T(n,n-1) = -n for n > 0, and T(n,n-2) = n^2 - 3*n + 3 for n > 1, and T(n,k) = (-1)^(n-k) * (k^2 + k + 1) * (n-2)! / k! for 0 <= k <= n-2.
T(n,k) = (2-n) * T(n-1,k) for 0 <= k < n-2.
T(n,k) = T(k+2,k) * (-1)^(n-k) * (n-2)! / k! for 0 <= k <= n-2.
Row sums are A000007(n) for n >= 0.
EXAMPLE
The triangle T(n,k) for 0 <= k <= n starts:
n\k : 0 1 2 3 4 5 6 7 8 9
================================================================
0 : 1
1 : -1 1
2 : 1 -2 1
3 : -1 3 -3 1
4 : 2 -6 7 -4 1
5 : -6 18 -21 13 -5 1
6 : 24 -72 84 -52 21 -6 1
7 : -120 360 -420 260 -105 31 -7 1
8 : 720 -2160 2520 -1560 630 -186 43 -8 1
9 : -5040 15120 -17640 10920 -4410 1302 -301 57 -9 1
etc.
PROG
(PARI) for(n=0, 10, for(k=0, n, if(k==n, print(" 1"), if(k==n-1, print1(-n, ", "), print1((-1)^(n-k)*(k^2+k+1)*(n-2)!/k!, ", ")))))
(PARI) 1/matrix(10, 10, n, k, n--; k--; if (n>=k, k*(n-k) + 1)) \\ Michel Marcus, Nov 11 2020
CROSSREFS
Sequence in context: A259074 A162981 A297359 * A029264 A215064 A124054
KEYWORD
sign,easy,tabl
AUTHOR
Werner Schulte, Oct 20 2020
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 15 22:50 EDT 2024. Contains 373412 sequences. (Running on oeis4.)