Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Dec 18 2020 02:35:59
%S 1,2,3,13,18,26,66,176,313,657,1022,2575,5142,9269
%N a(n) is the maximum length of the sequence obtained with the same scheme as in A338134 but starting with n primes.
%e a(6) = 26, which is based on the length of the sequence 3, 5, 7, 11, 13, 17, 19, 23, 31, 41, 53, 59, 73, 107, 131, 167, 233, 239, 311, 877, 1277, 1283, 1427, 2393, 3581, 4547.
%o (Python)
%o from sympy import isprime, prime
%o from itertools import chain, combinations as C
%o def powerset(s): # skip empty set & singletons
%o return chain.from_iterable(C(s, r) for r in range(2, len(s)+1))
%o def a(n):
%o alst, next_set = [prime(i+1) for i in range(1, n)], {prime(n+1)}
%o while len(next_set):
%o alst.append(min(next_set)); next_set = set()
%o for s in powerset(alst[-n:]):
%o ss = sum(s)
%o if len(next_set):
%o if ss > min(next_set): continue
%o if ss > alst[-1]:
%o if isprime(ss): next_set.add(ss)
%o return len(alst) # return alst on a(11) for A338134
%o for n in range(1, 12):
%o print(a(n), end=", ") # _Michael S. Branicky_, Dec 17 2020
%Y Cf. A338134 (when n=11).
%K nonn,hard,more
%O 1,2
%A _Anthony Winkelspecht_, Oct 16 2020
%E a(14) from _Michael S. Branicky_, Dec 17 2020