login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A338216 a(n) is the maximum length of the sequence obtained with the same scheme as in A338134 but starting with n primes. 0
1, 2, 3, 13, 18, 26, 66, 176, 313, 657, 1022, 2575, 5142, 9269 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Table of n, a(n) for n=1..14.

EXAMPLE

a(6) = 26, which is based on the length of the sequence 3, 5, 7, 11, 13, 17, 19, 23, 31, 41, 53, 59, 73, 107, 131, 167, 233, 239, 311, 877, 1277, 1283, 1427, 2393, 3581, 4547.

PROG

(Python)

from sympy import isprime, prime

from itertools import chain, combinations as C

def powerset(s): # skip empty set & singletons

  return chain.from_iterable(C(s, r) for r in range(2, len(s)+1))

def a(n):

  alst, next_set = [prime(i+1) for i in range(1, n)], {prime(n+1)}

  while len(next_set):

    alst.append(min(next_set)); next_set = set()

    for s in powerset(alst[-n:]):

      ss = sum(s)

      if len(next_set):

        if ss > min(next_set): continue

      if ss > alst[-1]:

        if isprime(ss): next_set.add(ss)

  return len(alst) # return alst on a(11) for A338134

for n in range(1, 12):

  print(a(n), end=", ") # Michael S. Branicky, Dec 17 2020

CROSSREFS

Cf. A338134 (when n=11).

Sequence in context: A215350 A118134 A215386 * A143871 A225517 A254462

Adjacent sequences:  A338213 A338214 A338215 * A338217 A338218 A338219

KEYWORD

nonn,hard,more

AUTHOR

Anthony Winkelspecht, Oct 16 2020

EXTENSIONS

a(14) from Michael S. Branicky, Dec 17 2020

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 23 13:01 EDT 2021. Contains 345401 sequences. (Running on oeis4.)