The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A338076 Diagonal terms in the expansion of 1/(1-x-2*y-3*z). 3
 1, 36, 3240, 362880, 44906400, 5884534656, 800296713216, 111714888130560, 15898425017080320, 2296439169133824000, 335647548960599715840, 49531592018516268810240, 7367824312754294985523200, 1103342589983347322447462400, 166176904368920474278821888000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Expand the rational function 1/(1-x-2*y-3*z) as Sum_i Sum_j Sum_k c(i,j,k)*x^i*y^j*z^k; a(n) = c(n,n,n). LINKS Robert Israel, Table of n, a(n) for n = 0..250 FORMULA Conjectures from Robert Israel, Oct 25 2020: (Start) a(n+1) = 18*(3*n+1)*(3*n+2)*a(n)/(n+1)^2. G.f.: hypergeom([1/3, 2/3], [1], 162*x). (End) a(n) = 6^n * (3*n)! / n!^3. - Vaclav Kotesovec, Oct 28 2020 MAPLE N:= 25: # for a(0)..a(N) F:= 1/(1-x-2*y-3*z): S1:= series(F, x, N+1): L1:= [seq(coeff(S1, x, i), i=0..N)]: L2:= [seq(coeff(series(L1[i+1], y, i+1), y, i), i=0..N)]: seq(coeff(series(L2[i+1], z, i+1), z, i), i=0..N); # Robert Israel, Oct 24 2020 MATHEMATICA nmax = 20; Flatten[{1, Table[Coefficient[Series[1/(1-x-2*y-3*z), {x, 0, n}, {y, 0, n}, {z, 0, n}], x^n*y^n*z^n], {n, 1, nmax}]}] (* Vaclav Kotesovec, Oct 23 2020 *) CROSSREFS Cf. A338075, A338337. Sequence in context: A061844 A036510 A232669 * A303339 A034983 A291911 Adjacent sequences: A338073 A338074 A338075 * A338077 A338078 A338079 KEYWORD nonn AUTHOR N. J. A. Sloane, Oct 22 2020 EXTENSIONS More terms from Vaclav Kotesovec, Oct 23 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 30 09:21 EST 2022. Contains 358438 sequences. (Running on oeis4.)