login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A338076
Diagonal terms in the expansion of 1/(1-x-2*y-3*z).
3
1, 36, 3240, 362880, 44906400, 5884534656, 800296713216, 111714888130560, 15898425017080320, 2296439169133824000, 335647548960599715840, 49531592018516268810240, 7367824312754294985523200, 1103342589983347322447462400, 166176904368920474278821888000
OFFSET
0,2
COMMENTS
Expand the rational function 1/(1-x-2*y-3*z) as Sum_i Sum_j Sum_k c(i,j,k)*x^i*y^j*z^k; a(n) = c(n,n,n).
LINKS
FORMULA
Conjectures from Robert Israel, Oct 25 2020: (Start)
a(n+1) = 18*(3*n+1)*(3*n+2)*a(n)/(n+1)^2.
G.f.: hypergeom([1/3, 2/3], [1], 162*x). (End)
a(n) = 6^n * (3*n)! / n!^3. - Vaclav Kotesovec, Oct 28 2020
MAPLE
N:= 25: # for a(0)..a(N)
F:= 1/(1-x-2*y-3*z):
S1:= series(F, x, N+1):
L1:= [seq(coeff(S1, x, i), i=0..N)]:
L2:= [seq(coeff(series(L1[i+1], y, i+1), y, i), i=0..N)]:
seq(coeff(series(L2[i+1], z, i+1), z, i), i=0..N); # Robert Israel, Oct 24 2020
MATHEMATICA
nmax = 20; Flatten[{1, Table[Coefficient[Series[1/(1-x-2*y-3*z), {x, 0, n}, {y, 0, n}, {z, 0, n}], x^n*y^n*z^n], {n, 1, nmax}]}] (* Vaclav Kotesovec, Oct 23 2020 *)
CROSSREFS
Sequence in context: A061844 A036510 A232669 * A303339 A034983 A291911
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Oct 22 2020
EXTENSIONS
More terms from Vaclav Kotesovec, Oct 23 2020
STATUS
approved