login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A338075
Diagonal terms in the expansion of (1+x*y*z)/(1-x-y-z).
4
1, 7, 96, 1770, 36330, 791406, 17909892, 416226096, 9864584730, 237338943270, 5778870222840, 142077992254380, 3521258757984240, 87862829835387600, 2205050763983594400, 55615552451285359680, 1408840444191389714010, 35825204161237194511830, 914089586182634239686000
OFFSET
0,2
COMMENTS
Expand the rational function (1+x*y*z)/(1-x-y-z) as Sum_i Sum_j Sum_k c(i,j,k)*x^i*y^j*z^k; a(n) = c(n,n,n).
If the numerator is changed to 1, we get A006480.
Suggested by Christol's Conjecture (see reference).
REFERENCES
Abdelaziz, Youssef, C. Koutschan, and J. M. Maillard. "On Christol’s conjecture." Journal of Physics A: Mathematical and Theoretical 53.20 (2020): 205201; arXiv:1912.10259.
LINKS
Y. Abdelaziz, C. Koutschan, and J-M. Maillard, On Christol's conjecture, arXiv:1912.10259 [math.NT], 2019-2020.
FORMULA
Conjectures from Robert Israel, Oct 25 2020: (Start)
G.f.: (x + 1)*LegendreP(-1/3, 1 - 54*x).
(-27*n^2 - 27*n - 6)*a(n + 1) + (-53*n^2 - 214*n - 173)*a(n + 2) + (-25*n^2 - 179*n - 319)*a(n + 3) + (n^2 + 8*n + 16)*a(n + 4) = 0. (End)
a(n) = (28*n^2 - 27*n + 6) * (3*n)! / (3 * (3*n - 1) * (3*n - 2) * n!^3). - Vaclav Kotesovec, Oct 28 2020
a(n) = A006480(n-1) + A006480(n) for n > 0. - Seiichi Manyama, Oct 31 2020
MAPLE
N:= 25: # for a(0)..a(N)
F:= (1+x*y*z)/(1-x-y-z):
S1:= series(F, x, N+1):
L1:= [seq(coeff(S1, x, i), i=0..N)]:
L2:= [seq(coeff(series(L1[i+1], y, i+1), y, i), i=0..N)]:
seq(coeff(series(L2[i+1], z, i+1), z, i), i=0..N); # Robert Israel, Oct 25 2020
MATHEMATICA
nmax = 20; Flatten[{1, Table[Coefficient[Series[(1 + x*y*z)/(1 - x - y - z), {x, 0, n}, {y, 0, n}, {z, 0, n}], x^n*y^n*z^n], {n, 1, nmax}]}] (* Vaclav Kotesovec, Oct 23 2020 *)
PROG
(PARI) {a(n) = if(n==0, 1, (3*(n-1))!/(n-1)!^3+(3*n)!/n!^3)} \\ Seiichi Manyama, Oct 31 2020
CROSSREFS
Other examples arising from diagonal terms of multivariate g.f.s: A000172, A006480, A338076.
Sequence in context: A217240 A222834 A327676 * A177879 A090687 A116125
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Oct 22 2020
EXTENSIONS
More terms from Vaclav Kotesovec, Oct 23 2020
STATUS
approved