login
A337862
a(n) is the smallest number that can be partitioned into n ways as the sum of two Moran numbers.
0
0, 36, 63, 174, 198, 306, 312, 399, 1176, 930, 1296, 1989, 1110, 888, 2190, 1896, 2688, 3990, 3630, 3090, 3696, 3810, 8316, 6870, 4710, 12420, 11340, 9180, 13350, 12990, 14070, 14364, 14970, 9900, 15444, 14790, 15012, 18570, 19980, 25164, 23610, 25092, 23790
OFFSET
0,2
EXAMPLE
0 cannot be written as the sum of two Moran numbers because A001101(1) = 18, so 0 is a term and a(0) = 0.
36 = 18 + 18 = A001101(1) + A001101(1), so a(1) = 36.
63 = 18 + 27 = A001101(1) + A001101(5) and 63 = 21 + 42 = A001101(2) + A001101(4), so a(2) = 63.
174 = 18 + 156 = 21 + 153 = 63 + 111 and 18, 21, 63, 111, 153, 156 are in A001101, so a(3) = 174.
198 = 27 + 171 = 42 + 156 = 45 + 153 = 84 + 114 and 27, 42, 45, 84, 153, 156, 171 are in A001101, so a(4) = 198.
MATHEMATICA
m = 60000; morans = Select[Range[m], PrimeQ[#/Plus @@ IntegerDigits[#]] &]; mx = 43; s = Table[-1, {mx}]; n = 0; c = 0; While[c < mx && n <= m, If[(i = Length[IntegerPartitions[n, {2}, morans]] + 1) <= mx && s[[i]] == -1, c++; s[[i]] = n]; n++]; s (* Amiram Eldar, Oct 21 2020 *)
PROG
(Magma) a:=[]; moran:=func<n|n mod &+Intseq(n) eq 0 and IsPrime( n div &+Intseq(n))>; v:={m:m in [1..40000]|moran(m)}; for n in [0..40] do k:=0; while #RestrictedPartitions(k, 2, v) ne n do k:=k+1; end while; Append(~a, k); end for; a;
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Marius A. Burtea, Oct 21 2020
STATUS
approved