OFFSET
1,2
COMMENTS
a(n) is the number of n-digit numbers in A053742.
LINKS
FORMULA
O.g.f.: 2*(1 - x)*x^2/(1 - 10*x).
E.g.f.: (9*exp(10*x) - 9 - 90*x + 50*x^2)/500.
a(n) = 10*a(n-1) for n > 3 , with a(1) = 0, a(2) = 2 and a(3) = 18.
a(n) = 18*10^(n-3) for n > 2.
a(n) = 18*A011557(n - 3) for n > 2.
a(n) = 2*A052268(n - 2) for n > 2.
Sum_{i=2..n} a(n) = A093136(n - 1) for n > 1.
a(n) = 2*floor((k + 27*10^(n-2))/30), with 2 < k < 28. [This formula was found in the form k = 7 by Christian Krause's LODA miner] - Stefano Spezia, Dec 06 2021
MATHEMATICA
LinearRecurrence[{10}, {0, 0, 2, 18}, 22]
CROSSREFS
KEYWORD
nonn,easy,base
AUTHOR
Stefano Spezia, Sep 27 2020
STATUS
approved