|
|
A337779
|
|
Odd composite integers m such that U(m)^2 == 1 (mod m) and V(m) == 5 (mod m), where U(m)=A004254(m) and V(m)=A003501(m) are the m-th generalized Lucas and Pell-Lucas numbers of parameters a=5 and b=1, respectively.
|
|
3
|
|
|
527, 551, 1105, 1807, 1919, 2015, 2071, 2915, 3289, 4031, 4033, 4355, 5291, 5777, 5983, 6049, 6061, 6479, 6785, 7645, 8695, 9361, 9889, 11285, 11663, 11951, 12209, 12265, 12545, 13079, 14491, 16211, 17119, 17249, 18299, 18407, 20087, 20099, 20845, 21505, 22499
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
For a, b integers, the following sequences are defined:
generalized Lucas sequences by U(n+2)=a*U(n+1)-b*U(n) and U(0)=0, U(1)=1,
generalized Pell-Lucas sequences by V(n+2)=a*V(n+1)-b*V(n) and V(0)=2, V(1)=a.
These satisfy the identities U(p)^2 == 1 and V(p)==a (mod p) for p prime and b=1,-1.
These numbers may be called weak generalized Lucas-Bruckner pseudoprimes of parameters a and b. The current sequence is defined for a=5 and b=1.
|
|
LINKS
|
|
|
MATHEMATICA
|
Select[Range[3, 10000, 2], CompositeQ[#] && Divisible[2*ChebyshevT[#, 5/2] - 5, #] && Divisible[ChebyshevU[#-1, 5/2]*ChebyshevU[#-1, 5/2] - 1, #] &]
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|