login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A337617
T(n, k) = (n + 1)*2^(n + k)*hypergeom([-n, k - n + 1], [2], 1/2), triangle read by rows for 0 <= k <= n.
1
1, 4, 6, 18, 24, 28, 88, 112, 128, 120, 450, 560, 640, 640, 496, 2364, 2904, 3328, 3456, 3072, 2016, 12642, 15400, 17696, 18816, 17920, 14336, 8128, 68464, 82912, 95488, 103168, 102400, 90112, 65536, 32640, 374274, 451296, 520704, 569088, 580608, 540672, 442368, 294912, 130816
OFFSET
0,2
FORMULA
T(n, k) = if n = k then 2^n*(2^(n+1)-1), otherwise 2^(2*k+1)*Sum_{j=0..n-k} ((-1)^j*2^(n-k-j)*binomial(n+1,j)*binomial(2*n-j-k,n)). - Detlef Meya, Dec 20 2023
EXAMPLE
Triangle starts:
[0] 1
[1] 4, 6
[2] 18, 24, 28
[3] 88, 112, 128, 120
[4] 450, 560, 640, 640, 496
[5] 2364, 2904, 3328, 3456, 3072, 2016
[6] 12642, 15400, 17696, 18816, 17920, 14336, 8128
[7] 68464, 82912, 95488, 103168, 102400, 90112, 65536, 32640
MAPLE
T := (n, k) -> simplify((n + 1)*2^(n + k)*hypergeom([-n, k - n + 1], [2], 1/2)): seq(seq(T(n, k), k=0..n), n=0..8);
MATHEMATICA
T[n_, k_] := If[n==k, 2^n*(2^(n+1)-1), 2^(2*k+1)*Sum[(-1)^j*2^(n-k-j)* Binomial[n+1, j]*Binomial[2*n-j-k, n], {j, 0, n-k}]];
Flatten[Table[T[n, k], {n, 0, 10}, {k, 0, n}]] (* Detlef Meya, Dec 20 2023 *)
CROSSREFS
T(n, n) = A171476(n) = A006516(n+1). T(n, 0) = A050146(n+1).
Cf. A337992 (row sums).
Sequence in context: A125133 A109310 A219190 * A120391 A064217 A026623
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Oct 19 2020
STATUS
approved