login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A337550
Number of closed-loop self-avoiding paths of length 4n on a 2D square lattice where no step can be in the same direction as the previous step.
2
8, 0, 24, 64, 360, 1728, 8624, 43776, 225216, 1173280, 6182704, 32905536, 176657000, 955629920, 5204178360, 28509374976, 157005901896, 868756900608, 4827586102216
OFFSET
1,1
COMMENTS
See A337353 for the corresponding number of walks.
Only walks with a length of 4n (except for n=2) can create closed loops.
LINKS
A. J. Guttmann and A. R. Conway, Self-Avoiding Walks and Polygons, Annals of Combinatorics 5 (2001) 319-345.
EXAMPLE
a(1) = 8. The single walk of length 4 is:
.
+---+
| |
+---+
.
This can be taken in 8 different ways on a square lattice, giving a total 1*8 = 8.
a(2) = 0 as there is no closed-loop path consisting of 8 steps.
a(3) = 24. There is one walk, ignoring reflection and rotations, with a length of 12. The walk is:
.
+---+
| |
+---+ +---+
| |
+---+ +---+
| |
+---+
.
This can be walked in 3 different ways if the first steps are right and then upward. This path can be then taken in 8 ways on a square lattice, giving a total number of 3*8 = 24.
a(4) = 64. There is one walk, with indistinct reflections and rotations, with a length of 16. The walk is:
.
+---+
| |
+---+ +---+
| |
+---+ +---+
| |
+---+ +---+
| |
+---+
.
This can be walked in 8 different ways if the first steps are right and then upward. This path can be then taken in 8 ways on a square lattice, giving a total number of 8*8 = 64.
.
a(5) = 360. There are four walks, with indistinct reflections and rotations, with a length of 20. The walks, and the different ways they can be taken, are:
.
+---+ +---+
| | | |
+---+ +---+ +---+ +---+
| | | |
+---+ +---+ +---+ +---+
| | | |
+---+ +---+ +---+ +---+
| | | |
+---+ +---+ +---+ +---+
| | x 10 | | x 20
+---+ +---+
+---+ +---+
| | | |
+---+ +---+ +---+ +---+
| | | |
+---+ +---+ +---+ +---+
| | | |
+---+ +---+ +---+ +---+
| | | |
+---+ +---+ +---+ +---+
| | x 5 | | x 10
+---+ +---+
.
Each of these can be walked in 8 different ways on a square lattice, giving a total number of 8*(10+20+5+10) = 360.
See the attached text file for images of the closed-loops for n=1 to n=11.
.
CROSSREFS
KEYWORD
nonn,walk,more
AUTHOR
Scott R. Shannon, Aug 31 2020
EXTENSIONS
a(18)-a(19) from Bert Dobbelaere, Sep 09 2020
STATUS
approved