login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers formed as the product of two numbers without consecutive equal binary digits and sharing no common bits between them.
0

%I #29 Sep 09 2020 09:22:36

%S 0,2,10,50,210,882,3570,14450,57970,232562,930930,3726450,14908530,

%T 59645042,238591090,954408050,3817675890,15270878322,61083688050,

%U 244335451250,977342504050,3909372812402,15637494045810,62549987368050,250199960657010,1000799887367282,4003199594208370

%N Numbers formed as the product of two numbers without consecutive equal binary digits and sharing no common bits between them.

%C The alternating, non-overlapping bits means that the divisors sum to 1 less than a power of 2.

%C They also resemble a zipper:

%C 10101010

%C 01010101.

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (5,0,-20,16).

%F a(n) = A000975(n - 1) * A000975(n).

%F From _Colin Barker_, Aug 24 2020: (Start)

%F G.f.: 2*x^2 / ((1 - x)*(1 - 2*x)*(1 + 2*x)*(1 - 4*x)).

%F a(n) = 5*a(n-1) - 20*a(n-3) + 16*a(n-4) for n>4.

%F (End)

%F 18*a(n) = 4^(n+1) +(-2)^n +4 -9*2^n. - _R. J. Mathar_, Sep 09 2020

%e For n = 6, in binary form:

%e 101010

%e x 010101

%e ----------

%e 1101110010 (882)

%t LinearRecurrence[{5, 0, -20, 16}, {0, 2, 10, 50}, 27] (* _Amiram Eldar_, Aug 24 2020 *)

%o (Python)

%o def a(n):

%o x = y = ''

%o for _ in range(n):

%o x, y = y + '1', x + '0'

%o return int(x, 2) * int(y, 2)

%o (PARI) a(n) = (2 * 2^n \ 3) * (2 * 2^(n-1) \ 3) \\ _David A. Corneth_, Aug 24 2020

%o (PARI) concat(0, Vec(2*x^2 / ((1 - x)*(1 - 2*x)*(1 + 2*x)*(1 - 4*x)) + O(x^30))) \\ _Colin Barker_, Sep 04 2020

%Y Formed from the product of consecutive pairs of A000975.

%K nonn,base,easy

%O 1,2

%A _Matt Donahoe_, Aug 24 2020