login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A337348
Numbers formed as the product of two numbers without consecutive equal binary digits and sharing no common bits between them.
0
0, 2, 10, 50, 210, 882, 3570, 14450, 57970, 232562, 930930, 3726450, 14908530, 59645042, 238591090, 954408050, 3817675890, 15270878322, 61083688050, 244335451250, 977342504050, 3909372812402, 15637494045810, 62549987368050, 250199960657010, 1000799887367282, 4003199594208370
OFFSET
1,2
COMMENTS
The alternating, non-overlapping bits means that the divisors sum to 1 less than a power of 2.
They also resemble a zipper:
10101010
01010101.
FORMULA
a(n) = A000975(n - 1) * A000975(n).
From Colin Barker, Aug 24 2020: (Start)
G.f.: 2*x^2 / ((1 - x)*(1 - 2*x)*(1 + 2*x)*(1 - 4*x)).
a(n) = 5*a(n-1) - 20*a(n-3) + 16*a(n-4) for n>4.
(End)
18*a(n) = 4^(n+1) +(-2)^n +4 -9*2^n. - R. J. Mathar, Sep 09 2020
EXAMPLE
For n = 6, in binary form:
101010
x 010101
----------
1101110010 (882)
MATHEMATICA
LinearRecurrence[{5, 0, -20, 16}, {0, 2, 10, 50}, 27] (* Amiram Eldar, Aug 24 2020 *)
PROG
(Python)
def a(n):
x = y = ''
for _ in range(n):
x, y = y + '1', x + '0'
return int(x, 2) * int(y, 2)
(PARI) a(n) = (2 * 2^n \ 3) * (2 * 2^(n-1) \ 3) \\ David A. Corneth, Aug 24 2020
(PARI) concat(0, Vec(2*x^2 / ((1 - x)*(1 - 2*x)*(1 + 2*x)*(1 - 4*x)) + O(x^30))) \\ Colin Barker, Sep 04 2020
CROSSREFS
Formed from the product of consecutive pairs of A000975.
Sequence in context: A268108 A143147 A317111 * A218778 A320521 A371605
KEYWORD
nonn,base,easy
AUTHOR
Matt Donahoe, Aug 24 2020
STATUS
approved