login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A337206
Cardinality of maximal level sets of Gini index on integer partitions.
2
1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 5, 5, 7, 8, 9, 11, 13, 15, 17, 21, 23, 28, 33, 38, 44, 52, 60, 72, 81, 95, 112, 128, 147, 175, 195, 233, 267, 305, 353, 412, 462, 533, 617, 703, 807, 932, 1052, 1210, 1389, 1569, 1785, 2060, 2315, 2642, 3023, 3405, 3876, 4413, 4968
OFFSET
0,7
COMMENTS
a(n) is a lower bound on A076269(n).
LINKS
Grant Kopitzke, The Gini Index of an Integer Partition, arXiv:2005.04284 [math.CO], 2020.
FORMULA
G.f.: Product_{n=1..oo} 1/(1-q^(binomial(n+1,2))x^n)-1 = Sum_{n=1..oo} Sum_{lambda a partition of n} q^(binomial(n+1,2)-g(lambda))x^n, where g(lambda) is the Gini index of lambda.
a(n) = max_{k=0..A161680(n)} A264034(n,k). - Alois P. Heinz, Jan 20 2023
EXAMPLE
For n=6 the maximal level set of the Gini index contains the partitions (3,3) and (4,1,1). So a(6)=2.
MAPLE
b:= proc(n, i, w) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1, w)+expand(x^(w*i)*b(n-i, min(i, n-i), w+1))))
end:
a:= n-> max(coeffs(b(n$2, 0))):
seq(a(n), n=0..61); # Alois P. Heinz, Jan 20 2023
MATHEMATICA
m = 75;
p = Product[ 1/(1 - q^Binomial[i + 1, 2] x^i), {i, 1, m}];
psn = Expand@Normal@Series[ p, {x, 0, m}];
psnc = CoefficientList[CoefficientList[psn, {x}, {m}], {q}];
Map[Max, psnc]
CROSSREFS
Lower bound on A076269.
Sequence in context: A099773 A140471 A029061 * A334576 A081607 A029060
KEYWORD
nonn
AUTHOR
Grant Kopitzke, Aug 18 2020
EXTENSIONS
Typo in a(43) corrected by Alois P. Heinz, Jan 20 2023
STATUS
approved