OFFSET
0,7
COMMENTS
a(n) is a lower bound on A076269(n).
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..300
Grant Kopitzke, The Gini Index of an Integer Partition, arXiv:2005.04284 [math.CO], 2020.
FORMULA
G.f.: Product_{n=1..oo} 1/(1-q^(binomial(n+1,2))x^n)-1 = Sum_{n=1..oo} Sum_{lambda a partition of n} q^(binomial(n+1,2)-g(lambda))x^n, where g(lambda) is the Gini index of lambda.
EXAMPLE
For n=6 the maximal level set of the Gini index contains the partitions (3,3) and (4,1,1). So a(6)=2.
MAPLE
b:= proc(n, i, w) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1, w)+expand(x^(w*i)*b(n-i, min(i, n-i), w+1))))
end:
a:= n-> max(coeffs(b(n$2, 0))):
seq(a(n), n=0..61); # Alois P. Heinz, Jan 20 2023
MATHEMATICA
m = 75;
p = Product[ 1/(1 - q^Binomial[i + 1, 2] x^i), {i, 1, m}];
psn = Expand@Normal@Series[ p, {x, 0, m}];
psnc = CoefficientList[CoefficientList[psn, {x}, {m}], {q}];
Map[Max, psnc]
CROSSREFS
KEYWORD
nonn
AUTHOR
Grant Kopitzke, Aug 18 2020
EXTENSIONS
Typo in a(43) corrected by Alois P. Heinz, Jan 20 2023
STATUS
approved