login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A029060
Expansion of 1/((1-x)*(1-x^3)*(1-x^10)*(1-x^11)).
1
1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 37, 40, 43, 47, 50, 53, 57, 60, 63, 67, 71, 75, 80, 85, 90, 95, 100, 105, 110, 115, 121, 127, 133, 140, 147, 154
OFFSET
0,4
COMMENTS
Number of partitions of n into parts 1, 3, 10 and 11. - Ilya Gutkovskiy, May 16 2017
LINKS
Index entries for linear recurrences with constant coefficients, signature (1,0,1,-1,0,0,0,0,0,1,0,-1,-1,0,1, 0,0,0,0,0,-1,1,0,1,-1).
FORMULA
a(0)=1, a(1)=1, a(2)=1, a(3)=2, a(4)=2, a(5)=2, a(6)=3, a(7)=3, a(8)=3, a(9)=4, a(10)=5, a(11)=6, a(12)=7, a(13)=8, a(14)=9, a(15)=10, a(16)=11, a(17)=12, a(18)=13, a(19)=14, a(20)=16, a(21)=18, a(22)=20, a(23)=22, a(24)=24, a(n)=a(n-1)+a(n-3)-a(n-4)+a(n-10)-a(n-12)-a(n-13)+a(n-15)- a(n-21)+ a(n-22)+a(n-24)-a(n-25). - Harvey P. Dale, Jan 11 2014
MATHEMATICA
CoefficientList[Series[1/((1-x)(1-x^3)(1-x^10)(1-x^11)), {x, 0, 60}], x] (* or *) LinearRecurrence[ {1, 0, 1, -1, 0, 0, 0, 0, 0, 1, 0, -1, -1, 0, 1, 0, 0, 0, 0, 0, -1, 1, 0, 1, -1}, {1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 18, 20, 22, 24}, 60] (* Harvey P. Dale, Jan 11 2014 *)
PROG
(PARI) a(n)=floor((2*n^3+75*n^2+822*n+4312)/3960+[-1, -1, -1, 1, 1, 1, 2, 1, -1, -2][n%10+1]/5+((2*n+2)%3-1)/9) \\ Tani Akinari, May 22 2014
(PARI) x='x+O('x^50); Vec(1/((1-x)*(1-x^3)*(1-x^10)*(1-x^11))) \\ G. C. Greubel, May 17 2017
CROSSREFS
Sequence in context: A337206 A334576 A081607 * A184258 A219291 A029160
KEYWORD
nonn
STATUS
approved