login
a(n) is the smallest m such that A054024(m) = prime(n), where A054024(m) is A000203(m) mod m, or -1 if there is no such m.
2

%I #19 Jan 29 2021 14:21:36

%S 20,4,-1,8,21,27,39,36,57,115,32,155,63,50,129,235,265,371,305,201,98,

%T 365,237,171,245,291,485,309,325,327,128,189,279,917,1507,1529,242,

%U 785,489,835,865,1211,385,605,579,324,338,2321,669,1115,687,1165,399,1936

%N a(n) is the smallest m such that A054024(m) = prime(n), where A054024(m) is A000203(m) mod m, or -1 if there is no such m.

%C From _Bernard Schott_, Jan 28 2021: (Start)

%C a(n) > 0 when n <> 3.

%C Proof: When n = 1, 2, 4 then a(n) = 20, 4, 8; then, following Goldbach conjecture when p = prime(n) >= 11 with p-1 = p1 + p2, then sigma(p1*p2) = 1+p1+p2+p1*p2 == 1+p1+p2 = p (mod p1*p2); hence, for each n>= 5, a(n) exists and a(n) <= p1*p2 (see examples).

%C Now, when n = 3, no k is known such that sigma(k) == 5 (mod k)? (End)

%H Michel Marcus, <a href="/A337157/b337157.txt">Table of n, a(n) for n = 1..4000</a>

%e For prime(5) = 11, 11-1=3+7 with 3*7 = 21, so a(5) <= 21 and a(5) = 21.

%e For prime(6) = 13, 13-1=5+7 with 5*7 = 35, so a(6) <= 35 but sigma(27) = 40 == 13 (mod 27), hence a(6)=27.

%o (PARI) f(n) = sigma(n) % n; \\ A054024

%o a(n) = if (n==3, return (-1)); my(k=1, p=prime(n)); while (f(k) != p, k++); k;

%Y Cf. A000203, A054024, A308150.

%K sign

%O 1,1

%A _Michel Marcus_, Jan 28 2021