login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A337006
Number of distinct pairs of externally tangent circles with radius sqrt(2) and center (p,q) where p and q are prime, p + q = A187797(n) and p <= q.
0
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 1, 3, 2, 1, 2, 1, 1, 2, 2, 1, 2, 2, 3, 1, 3, 1, 1, 2, 1, 3, 1, 2, 6, 1, 3, 1, 1, 2, 4, 1, 3, 4, 4, 1, 3, 1, 1, 3, 1, 5, 2, 6, 1, 3, 1, 2, 2, 5, 2, 5, 2, 1, 3, 1, 2, 3, 5, 2, 4, 3, 1, 6, 1, 2, 3, 1, 3, 1, 5, 1, 5, 1
OFFSET
1,11
MATHEMATICA
Table[If[Sum[(PrimePi[i] - PrimePi[i - 1]) (PrimePi[2n - i] - PrimePi[2n - i - 1]) (PrimePi[i - 2] - PrimePi[i - 3]) (PrimePi[2n - i + 2] -PrimePi[2n - i + 1]), {i, 3, n}] > 0, Sum[(PrimePi[i] - PrimePi[i - 1]) (PrimePi[2n - i] - PrimePi[2n - i - 1]) (PrimePi[i - 2] - PrimePi[i - 3]) (PrimePi[2n - i + 2] - PrimePi[2n - i + 1]), {i, 3, n}], {}], {n, 300}] // Flatten
CROSSREFS
Sequence in context: A254444 A102005 A051700 * A025892 A025883 A111335
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Aug 11 2020
STATUS
approved