Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #7 Aug 11 2020 10:38:35
%S 0,1,0,1,1,1,0,3,2,2,1,1,1,1,1,1,2,3,2,2,0,2,1,3,1,2,2,1,3,2,0,3,1,3,
%T 1,3,3,3,1,4,2,1,2,2,3,2,1,1,4,2,2,2,3,3,2,3,2,4,3,2,1,1,2,1,2,2,3,3,
%U 1,2,2,5,4,4,1,3,1,2,2,2,4,3,2,1,3,3,3,4,4,4,1,2,0,2,3,3,2,5,3,2,4,3,2,4,1
%N a(n) = A331410(sigma(n)), where A331410 is totally additive with a(2) = 0 and a(p) = 1 + a(p+1) for odd primes.
%H Antti Karttunen, <a href="/A336929/b336929.txt">Table of n, a(n) for n = 1..65537</a>
%H <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a>
%F Additive with a(p^e) = A331410(sigma(p^e)) = A331410(1+ p + p^2 + ... + p^e).
%F a(n) = A331410(A000203(n)).
%o (PARI)
%o A331410(n) = { my(f=factor(n)); sum(k=1,#f~,if(2==f[k,1],0,f[k,2]*(1+A331410(f[k,1]+1)))); };
%o A336929(n) = A331410(sigma(n));
%Y Cf. A000203, A331410.
%Y Cf. also A336695, A336927, A336928.
%K nonn
%O 1,8
%A _Antti Karttunen_, Aug 11 2020