The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A336572 G.f. A(x) satisfies: A(x) = 1 + x * A(x)^4 * (1 +  2 * A(x)). 3
 1, 3, 42, 822, 18708, 464115, 12175368, 332156784, 9328004700, 267870927324, 7829893576878, 232189300430454, 6968123350684692, 211232335919261178, 6458598626291716128, 198949096401788859636, 6168233789851179030684, 192334850789654814053700, 6027727888877572168027368 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Seiichi Manyama, Table of n, a(n) for n = 0..655 FORMULA a(n) = Sum_{k=0..n} 2^k * binomial(n,k) * binomial(4*n+k+1,n)/(4*n+k+1). a(n) = (1/(4*n+1)) * Sum_{k=0..n} 2^(n-k) * binomial(4*n+1,k) * binomial(5*n-k,n-k). a(n) ~ sqrt(95781603 + 7199237*sqrt(177))*(69845 + 5251*sqrt(177))^(n - 1/2) / (sqrt(59*Pi) * n^(3/2) * 2^(12*n + 9/2)). - Vaclav Kotesovec, Jul 31 2021 MATHEMATICA a[n_] := Sum[2^k * Binomial[n, k] * Binomial[4*n + k + 1, n]/(4*n + k + 1), {k, 0, n}];  Array[a, 19, 0] (* Amiram Eldar, Jul 27 2020 *) PROG (PARI) {a(n) = local(A=1+x*O(x^n)); for(i=0, n, A=1+x*A^4*(1+2*A)); polcoeff(A, n)} (PARI) {a(n) = sum(k=0, n, 2^k*binomial(n, k)*binomial(4*n+k+1, n)/(4*n+k+1))} (PARI) {a(n) = sum(k=0, n, 2^(n-k)*binomial(4*n+1, k)*binomial(5*n-k, n-k))/(4*n+1)} \\ Seiichi Manyama, Jul 26 2020 CROSSREFS Column k=4 of A336574. Cf. A243667, A336540. Sequence in context: A097068 A269046 A092470 * A206820 A157542 A078601 Adjacent sequences:  A336569 A336570 A336571 * A336573 A336574 A336575 KEYWORD nonn AUTHOR Seiichi Manyama, Jul 25 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 28 07:25 EDT 2022. Contains 354903 sequences. (Running on oeis4.)