



6, 28, 234, 496, 588, 600, 1521, 1638, 6552, 8128, 55860, 89376, 33550336, 168836850
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Numbers k for which A336563(k) = A336566(n) [= gcd(A336563(n), A336564(n))].
Numbers k such that either both A336563(k) and A336564(k) are zero (in which case k is squarefree), or A336563(k) divides A336564(k), in which case k is not squarefree.
Also numbers k for which A336647(n) = 2*n  A057723(n).
Question: Are there any other odd terms apart from 1521 = 39^2 ?


LINKS

Table of n, a(n) for n=1..14.
Index entries for sequences where odd perfect numbers must occur, if they exist at all


PROG

(PARI)
A007947(n) = factorback(factorint(n)[, 1]);
A057723(n) = { my(r=A007947(n)); (r*sigma(n/r)); };
isA336565(n) = { my(b=A057723(n), c=(sigma(n)b), d=(bn)); (gcd(d, (nc))==d); };


CROSSREFS

Cf. A057723, A308135, A336563, A336564, A336566, A336647.
Cf. A000396 (a subsequence).
Cf. also A326145.
Sequence in context: A052395 A034660 A206708 * A216413 A090898 A134872
Adjacent sequences: A336562 A336563 A336564 * A336566 A336567 A336568


KEYWORD

nonn,more


AUTHOR

Antti Karttunen, Jul 26 2020


STATUS

approved



